p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.24C22, C24.213C23, C23.240C24, C22.742+ 1+4, C2.3D42, C22⋊2(C4×D4), C22≀C2⋊8C4, C24⋊12(C2×C4), C22⋊C4⋊43D4, (C23×C4)⋊7C22, C2.6(D4⋊5D4), (C2×C42)⋊16C22, C23.417(C2×D4), C23.8Q8⋊15C2, C23.292(C4○D4), C23.23D4⋊12C2, C22.131(C23×C4), (C22×C4).762C23, C23.131(C22×C4), C22.111(C22×D4), C2.C42⋊12C22, C24.3C22⋊19C2, C24.C22⋊17C2, (C22×D4).485C22, C2.4(C22.45C24), C2.29(C22.11C24), (C2×C4×D4)⋊11C2, C2.34(C2×C4×D4), (C2×D4)⋊18(C2×C4), (C4×C22⋊C4)⋊39C2, C22⋊C4⋊29(C2×C4), (C2×C4).886(C2×D4), (C2×C4⋊C4)⋊104C22, (C2×C22≀C2).5C2, C22⋊C4○4(C22⋊C4), (C22×C22⋊C4)⋊9C2, (C2×C4).39(C22×C4), (C2×C22⋊C4)⋊74C22, C22.125(C2×C4○D4), C22⋊C4○3(C2×C22⋊C4), SmallGroup(128,1090)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.240C24
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=g2=1, d2=e2=c, ab=ba, ac=ca, ede-1=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, fg=gf >
Subgroups: 940 in 464 conjugacy classes, 164 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C22≀C2, C23×C4, C23×C4, C22×D4, C22×D4, C25, C4×C22⋊C4, C23.8Q8, C23.23D4, C23.23D4, C24.C22, C24.3C22, C22×C22⋊C4, C2×C4×D4, C2×C22≀C2, C23.240C24
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22×C4, C2×D4, C4○D4, C24, C4×D4, C23×C4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C4×D4, C22.11C24, D42, D4⋊5D4, C22.45C24, C23.240C24
(1 11)(2 12)(3 9)(4 10)(5 22)(6 23)(7 24)(8 21)(13 25)(14 26)(15 27)(16 28)(17 31)(18 32)(19 29)(20 30)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 13)(10 14)(11 15)(12 16)(21 29)(22 30)(23 31)(24 32)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21 3 23)(2 5 4 7)(6 11 8 9)(10 24 12 22)(13 17 15 19)(14 32 16 30)(18 28 20 26)(25 31 27 29)
(1 3)(2 26)(4 28)(5 18)(6 8)(7 20)(9 11)(10 16)(12 14)(13 15)(17 19)(21 23)(22 32)(24 30)(25 27)(29 31)
(1 25)(2 26)(3 27)(4 28)(5 32)(6 29)(7 30)(8 31)(9 15)(10 16)(11 13)(12 14)(17 21)(18 22)(19 23)(20 24)
G:=sub<Sym(32)| (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,3,23)(2,5,4,7)(6,11,8,9)(10,24,12,22)(13,17,15,19)(14,32,16,30)(18,28,20,26)(25,31,27,29), (1,3)(2,26)(4,28)(5,18)(6,8)(7,20)(9,11)(10,16)(12,14)(13,15)(17,19)(21,23)(22,32)(24,30)(25,27)(29,31), (1,25)(2,26)(3,27)(4,28)(5,32)(6,29)(7,30)(8,31)(9,15)(10,16)(11,13)(12,14)(17,21)(18,22)(19,23)(20,24)>;
G:=Group( (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,13)(10,14)(11,15)(12,16)(21,29)(22,30)(23,31)(24,32), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,3,23)(2,5,4,7)(6,11,8,9)(10,24,12,22)(13,17,15,19)(14,32,16,30)(18,28,20,26)(25,31,27,29), (1,3)(2,26)(4,28)(5,18)(6,8)(7,20)(9,11)(10,16)(12,14)(13,15)(17,19)(21,23)(22,32)(24,30)(25,27)(29,31), (1,25)(2,26)(3,27)(4,28)(5,32)(6,29)(7,30)(8,31)(9,15)(10,16)(11,13)(12,14)(17,21)(18,22)(19,23)(20,24) );
G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,22),(6,23),(7,24),(8,21),(13,25),(14,26),(15,27),(16,28),(17,31),(18,32),(19,29),(20,30)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,13),(10,14),(11,15),(12,16),(21,29),(22,30),(23,31),(24,32)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21,3,23),(2,5,4,7),(6,11,8,9),(10,24,12,22),(13,17,15,19),(14,32,16,30),(18,28,20,26),(25,31,27,29)], [(1,3),(2,26),(4,28),(5,18),(6,8),(7,20),(9,11),(10,16),(12,14),(13,15),(17,19),(21,23),(22,32),(24,30),(25,27),(29,31)], [(1,25),(2,26),(3,27),(4,28),(5,32),(6,29),(7,30),(8,31),(9,15),(10,16),(11,13),(12,14),(17,21),(18,22),(19,23),(20,24)]])
50 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | 2Q | 2R | 2S | 4A | ··· | 4P | 4Q | ··· | 4AD |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.240C24 | C4×C22⋊C4 | C23.8Q8 | C23.23D4 | C24.C22 | C24.3C22 | C22×C22⋊C4 | C2×C4×D4 | C2×C22≀C2 | C22≀C2 | C22⋊C4 | C23 | C22 |
# reps | 1 | 2 | 2 | 3 | 2 | 1 | 2 | 2 | 1 | 16 | 8 | 8 | 2 |
Matrix representation of C23.240C24 ►in GL5(𝔽5)
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 3 | 2 |
0 | 0 | 0 | 1 | 2 |
2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 2 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
G:=sub<GL(5,GF(5))| [1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4],[4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[2,0,0,0,0,0,3,0,0,0,0,0,2,0,0,0,0,0,3,1,0,0,0,2,2],[2,0,0,0,0,0,0,4,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,1,2,0,0,0,0,4],[1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4] >;
C23.240C24 in GAP, Magma, Sage, TeX
C_2^3._{240}C_2^4
% in TeX
G:=Group("C2^3.240C2^4");
// GroupNames label
G:=SmallGroup(128,1090);
// by ID
G=gap.SmallGroup(128,1090);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,456,758,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=g^2=1,d^2=e^2=c,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,f*g=g*f>;
// generators/relations